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Abstract
A theoretical scheme to employ the principle of minimal sensitivity for choosing
the optimal values of nonlinear parameters is proposed for the multistate
Rayleigh–Ritz variational method. Anharmonic oscillators are particularly
considered in this paper. Applications of the present scheme to the one-
dimensional Morse and two double-well potentials indicate that it provides
much more accurate and faster convergent approximations to the exact energy
eigenvalues than several schemes existing in the literatures.

PACS number: 03.65.Ge

1. Introduction

The multistate Rayleigh–Ritz variational method (MSRRVM) [1] is one of the most basic and
widely used methods for approximately solving the time-independent Schrödinger equation.
Originally, it was proposed and used by Rayleigh in 1873 and Ritz in 1908 for non-
perturbatively solving eigenvalue problems of linear differential equations. Naturally, the
MSRRVM was applied to quantum systems shortly after quantum mechanics was born [2].
Since then, the MSRRVM has been applied to a great variety of quantum systems with success.

Nevertheless, a perfect and more complete scheme for determining the values of the
nonlinear parameters assigned in the MSRRVM is still needed, though the MSRRVM has
been being used successfully in quantum theory for about 80 years. This need can be seen
from the importance of the nonlinear parameters in the procedure of the MSRRVM and the
particularities of those schemes used in the applications of the MSRRVM.

In performing the procedure of the MSRRVM, determination of the value of the nonlinear
parameter is an important step. (Here, we are restricted to the single-parameter case for
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simplicity.) The nonlinear parameter is contained in the N functions, φns, which are extracted
by truncating some complete infinite orthonormal set {φn} ≡ {φ0, φ1, φ2, . . .}. (One can
consider a more general set also.) Usually, the nonlinear parameter exists in the functions,
φns and, in the MSRRVM, is artificially regarded as a parameter to be determined. The N
functions, φns, are linearly combined to construct a normalized trial wavefunction �:

� =
N−1∑
n=0

Cnφn (1)

for a system with a Hamiltonian operator Ĥ , where the coefficients Cn are the linear
superposition coefficients. The coefficients Cn can be determined by minimizing 〈�|Ĥ |�〉
with respect to Cn, and satisfy the following set of N homogeneous linear equations:

N−1∑
n=0

(Hmn − E(N)δmn)Cn = 0, m = 0, 1, 2, . . . , N − 1 (2)

with Hmn ≡ 〈φm|Ĥ |φn〉, δmn is the Kronecker symbol and E(N) is the Lagrange undetermined
multiplier. It is E(N) that the MSRRVM takes as an approximation to the exact energy
eigenvalue of the system. All Hmn with m, n < N form a matrix HN and equation (2) is
nothing but its eigenvalue equation with E(N) being the eigenvalue. For non-degenerate cases,
the N eigenvalues of HN,E

(N)
k s (k = 0, 1, . . . , < N), provide approximate values to the

lowest lying N exact energy eigenvalues E
(exact)
k (k < N) [3]. (When N = 1, the MSRRVM

approximates the ground-state energy and is the variational method introduced in the textbooks
on quantum mechanics.) Obviously, approximations to the exact energies provided by the
MSRRVM depend upon the value of the nonlinear parameter. In fact, nontrivial solutions of
equation (2) lead to E(N) satisfying the secular equation

Det(Hmn − E(N)δmn) = 0, (3)

where the symbol Det(A) represents the determinant of the matrix A, and accordingly
equation (3) gives the dependence of E(N) on the nonlinear parameter. Therefore, the
value of the nonlinear parameter is closely related to the accuracy of the approximations.
Furthermore, the MSRRVM can be performed at any N, and a different N gives rise to
different approximations E

(N)
k s. Those successive approximations with various N compose

the sequence
{
E

(N)
k

} ≡ {
E

(0)
k , E

(1)
k , E

(2)
k , . . .

}
for every k. E

(N)
k in the sequence approaches

the kth exact energy eigenvalue E
(exact)
k when N tends to the infinity (the interlace theorem)

[3, 4]. So the value of the nonlinear parameter is crucial to the convergent speed of the
sequence

{
E

(N)
k

}
to E

(exact)
k . In a word, the value of the nonlinear parameter greatly affects

both the accuracy of the MSRRVM approximations at any given N and the convergent speed
of the sequence

{
E

(N)
k

}
to E

(exact)
k .

Generally, for any given N, the nonlinear parameter can take any value in its own domain
and a different value of it will yield an approximation for E

(exact)
k with a different accuracy. It

is presumed that, for a given N, there should exist a value, µ
(N)
k,exact, of the nonlinear parameter

for the MSRRVM which gives rise to E
(exact)
k , although it cannot be determined exactly. But

one can manage to establish a criterion for choosing a value for the nonlinear parameter which
approaches µ

(N)
k,exact most closely. Such a chosen value of the nonlinear parameter is called the

optimal value. It is believed that, for any given N, the optimal value of the nonlinear parameter
will give rise to the best approximation and the fastest convergency to E

(exact)
k .

In the present paper, we intend to concentrate our attention only on one-dimensional
anharmonic oscillators to show the criterion for choosing the optimal value of the nonlinear



The multistate Rayleigh–Ritz variational method 14459

parameter more clearly. Various anharmonic oscillators have been investigated with the
MSRRVM in the literatures [5–12]. In the context, the aforementioned complete set {φn} is
usually chosen as the following energy eigenfunctions of a harmonic oscillator:

φn(x) = An e−µx2/2Hn(
√

µx), n = 0, 1, 2, . . . , (4)

where An = (µ/π)1/4/
√

2nn! and Hn(x) the nth-order Hermitian polynomial. In
equation (4), the parameter µ is assigned as the aforementioned nonlinear parameter to
be determined. We will also be concerned only for this choice, equation (4), in the present
paper. In the investigations to anharmonic oscillators with the MSRRVM, in order to choose
the optimal value µO for µ, several criterions or schemes were proposed by employing
diagonal elements Hnn [5–12]. Among the schemes, the first scheme is to determine µO by
minimizing H00 with respect to µ and uses the resultant value of µO for every dimension N
[5]. This scheme of fixing µO from H00 is almost always feasible and has provided good
approximate results to the exact energy eigenvalues for symmetrical single-well anharmonic-
oscillator potentials [6]. Noticing that the scheme of fixing µO from H00 is not appropriate
to the double-well anharmonic-oscillator potential, Balsa et al proposed another scheme of
minimizing the expectation value Hnn (n < N) with respect to both µ and the quantum
number n, and consequently produced a good approximation for the double-well anharmonic
oscillator [6]. The quantum number n is not a continuously varying quantity, and so Quick
and Miller proposed yet another scheme of minimizing the sum of some diagonal elements
Hnn (n < N) with respect to µ and the scheme provided better approximations than Balsa’s
scheme [8]. Later in 1989, Bishop et al modified Balsa’s scheme through minimization of
Hnn only with respect to µ and by directly fixing n = N − 1. The scheme also yielded better
approximations than Balsa’s scheme [9]. In 2002, Jafarpour and Afshar proposed an optimal
squeezed state scheme (similar to the aforementioned scheme of fixing µO from H00) and
provided good approximations [11]. Recently, Van der Straeten and Naudts adopted Bishops’
scheme successfully to investigate a double-well anharmonic oscillator in an external field
[12]. The above schemes of determining µO have, with their own peculiarities, played an
important role in the successful applications of the MSRRVM.

However, the nonlinear parameter is contained not only in the diagonal elements Hnn but
also in the off-diagonal elements Hmn(m �= n). Moreover, the final object of the MSRRVM
calculation is not the diagonal elements Hnn, but E

(N)
k . Thus, we feel that a more appropriate

criterion or scheme is needed in choosing µO. Such a new scheme is expected to provide more
accurate and faster convergent approximations than those schemes existing in the literatures.

Here, in order to choose µO, we suggest to use the principle of minimal sensitivity (PMS)
[13], which has extensively been used in the variational perturbation theory [14, 15]. Based
on the PMS, we shall propose a scheme which directly considers the dependence of E(N)

upon µ, in which not only the diagonal elements Hnn but also the off-diagonal elements Hmn

(m �= n) are involved. For checking the accuracy and convergency to E
(exact)
k , we shall consider

the one-dimensional Morse and two double-well anharmonic-oscillator potentials using our
scheme. It will be shown that the MSRRVM with the PMS produces much more accurate and
faster convergent approximations than the several schemes existing in the literatures.

In the following section, we describe the scheme for determining µO with the PMS. In
section 3, we calculate the matrix elements Hmn for a relatively general anharmonic oscillator.
Hmn for such an anharmonic oscillator has been given by employing creation and annihilation
operators in [14], but here we adopt the coordinate representation of the Schrödinger picture.
In section 4, energy eigenvalues for some concrete anharmonic oscillators will be calculated
using the MSRRVM with the PMS, and their comparisons with the results in [6, 9, 11] will be
made for checking the accuracy of the approximations. A conclusion will be made at the end.
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2. The scheme of determining µO based on the PMS

The main spirit of the PMS is that, for an approximation scheme which breaks down the
known invariance of the exact result, the ‘optimum’ approximant is the one that is least
sensitive to variations in the unphysical parameters [13]. It was proposed originally for
solving the difficulty of the dependency of perturbative results in quantum field theory upon
the renormalization schemes [13], and has now been used to determine optimal value of an
artificial parameter in the variational perturbation theory [14]. With the aid of the PMS, the
variational perturbation theory can provide a good approximation and a fast convergency to
the exact quantity and has been applied in quantum field theory, statistical physics, condensed
matter physics, quantum mechanics (of course, including the quantum anharmonic oscillators)
and quantum chemistry [14–16]. Although the MSRRVM is not a series-expansion technique
on the exact energy as the variational perturbation theory is, it still possesses characteristics
similar to the series-expansion technique. That is, an approximation from the MSRRVM
depends upon the value of the parameter µ which is to be determined. For a different
dimension N it provides a different approximation to E

(exact)
k , and successive approximations

produced by it tend to the exact energy which is independent of the parameter µ. So, we
expect that the PMS can be employed to choose µO in the MSRRVM. Actually, the fact that
the exact energies for an anharmonic oscillator are invariant with a varying µ can be regarded
as ‘the known invariance of the exact result’ in the PMS. Such an invariance is broken down by
the approximation to the exact energies produced by the MSRRVM at any given N. Hence, the
parameter µ which does not have the invariance due to the approximation from the MSRRVM
can be determined according to the PMS.

From the above brief analysis, the value of µ about which E(N) is most insensitive to
variations in µ can be regarded as the optimal value, µO. As E(N) depends on the value of µ

and equation (3) defines the concrete dependence relation at any given dimension N, the most
insensitivity of E(N) to µ is expected to yield the most accurate approximations for the exact
energy eigenvalues. The independence of E

(exact)
k s of µ means that all E

(exact)
k s are constants

in the whole domain of µ, and the dependence of the approximation E(N) at any given N on
µ implies that E(N) varies when µ varies in its domain. Generally, in the domain of µ, E(N)

may vary rapidly at some points and slowly at some other points. Since E
(N)
k s tend to E

(exact)
k s

eventually with the infinite increase of N and E
(N)
k s are multi-value solutions of equation (3)

for E(N) with µ = µO, E(N) should mimic E
(exact)
k s as possibly as it can in the aspects of

the dependence upon µ. So the value of µ about which E(N) varies most slowly will give
rise to the best approximation to E

(exact)
k s. Therefore, the value of µ determined at a given N

according to the PMS should be µO, the optimal value of µ, which, presumably, gives rise to
the most accurate and fastest convergent approximations at the given N to E

(exact)
k s.

Since µO is the value in the domain of µ where E(N) varies most slowly with µ, µO

should generally come out of maxima, minima and may be knees of the function E(N)(µ).
Thus, in order to single out µO, the first step is to find the maxima and the minima, i.e., to find
the stationary points µS of the function E(N)(µ), that is to solve the following equation:

dE(N)(µ)

dµ

∣∣∣∣
µ=µS

= 0. (5)

Note that generally it is difficult to obtain an explicit form of the function E(N)(µ) from
equation (3), and so it is difficult to solve equation (5), too. Nevertheless, a simple derivation
can show that equation (5) is equivalent to the condition

∂DN(µ,E(N))

∂µ

∣∣∣∣
µ=µS

= 0, (6)
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with DN(µ,E(N)) ≡ Det(Hmn − E(N)δmn). Actually, the function DN(µ,E(N)) has
two arguments µ and E(N), and equation (3) defines well the implicit function of µ,
E(N) = E(N)(µ) (assumed). Thus, one has

dDN(µ,E(N))

dµ
= ∂DN(µ,E(N))

∂µ
+

∂DN(µ,E(N))

∂E(N)

dE(N)

dµ
= 0.

Then, employing equation (5), one can handle equation (6). Equation (6) is a binary
equation with the unknowns µ and E(N). Because µ and E(N) have to satisfy equation (3),
equations (6) and (3) can be grouped into a consistent system of nonlinear equations to
determine both µS and E

(N)
S ≡ E(N)(µS). Now, we note that we can solve the problem by

solving the system of equations (6) and (3) for both E
(N)
S and µS instead of solving equation

(5) for µS directly. As for solving the system of equations (6) and (3), one can do it with the
help of computer application program packages.

The second step of singling out µO is to pick up µO from the stationary
points µS . Generally, there exist many pairs of solutions of equations (6) and (3),(
E

(N)
S1 , µS1

)
,
(
E

(N)
S2 , µS2

)
, . . . , and every µSl in the pairs

(
E

(N)
Sl , µSl

)
(l = 1, 2, and so on)

would be negative, positive or even complex. The optimal value µO of µ should be positive.
Thus, if there is only one pair of solutions, for example

(
E

(N)
Sj , µSj

)
, with µSj > 0 among all

the pairs of solutions
(
E

(N)
Sl , µSl

)
(l = 1, 2, and so on), then the positive µSj is really µO. If

there exist many pairs of solutions
(
E

(N)
Si , µSi

)
with µSi (i = 1, 2, . . .) positive, then one can

pick up µO from them by using the second derivative of E(N)(µ) with respect to µ, d2E(N)

dµ2 . In
the same way as done to get equation (6), one has

d2DN(µ,E(N))

dµ2
=

{
2
∂2DN(µ,E(N))

∂E(N)∂µ
+

∂

∂E(N)

[
∂DN(µ,E(N))

∂E(N)

dE(N)

dµ

]}
dE(N)

dµ

+
∂2DN(µ,E(N))

∂µ2
+

∂DN(µ,E(N))

∂E(N)

d2E(N)

dµ2
= 0.

Then, employing equation (5), one can obtain the following equation:

d2E(N)

dµ2

∣∣∣∣
µ=µS

= − ∂2DN(µ,E(N))/∂µ2

∂DN(µ,E(N))/∂E(N)

∣∣∣∣
µ=µS

. (7)

Thus, one can calculate the value of d2E(N)

dµ2 at any stationary point by using equation (7). If

one establishes a two-dimensional coordinate system with µ abscissa and E(N) ordinate, then
E(N)(µ) will be a curve in the coordinate plane {µ,E(N)} and the absolute value of d2E(N)

dµ2 at

µ = µSi will be the reciprocal radius of curvature of the curve E(N)(µ) at µ = µSi . Smaller
the absolute value of d2E(N)

dµ2 at µ = µSi is, bigger the corresponding radius of curvature is,

and accordingly more slowly E(N)(µ) varies about µ = µSi . Hence, for some number j of
the positive integer set i with i = 1, 2, . . . , if µ = µSj makes the absolute value of d2E(N)

dµ2

at µ = µSj smaller than the value at µ = µSi for all i �= j , then µ = µSj is the optimal
value µO of µ. So, in the multi-roots case, one can substitute all the pairs of solutions{
E

(N)
Si , µSi

}
with µSi > 0 (i = 1, 2, . . .) into equation (7) to calculate the value of d2E(N)

dµ2 ,
and then singles out µSj as the optimal value µO, where the fixed j satisfies the inequality∣∣ d2E(N)

dµ2

∣∣
µ=µSj

∣∣ �
∣∣ d2E(N)

dµ2

∣∣
µ=µSi

∣∣ for all i �= j . A concrete illustration for the procedure of
determining µO will be given when we discuss the second anharmonic oscillator in section 4.
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We want to point out that sometimes, one may encounter two special cases. One case is
that there exist no pairs of solutions with µSi being positive for the system of equations (6) and
(3). For this case, one can seek for knees, i.e., the optimal value of µ making d2E(N)

dµ2

∣∣
µ=µO

= 0.
Another case is that there exist neither stationary points with µSi > 0 nor knees with µSi > 0.
When the case occurs, one will not be able to find any optimal value of µ at the dimension N in
consideration, and have to continue the MSRRVM at the next higher N, a situation analogous
to which was met when the principle of minimal sensitivity was applied in the variational
perturbation theory of the non-extensive Tsallis statistics [16].

As an end of this section, we stress that the scheme of singling out µO with the PMS
need not be a minimization procedure, which is used both in those schemes for the MSRRVM
existed previously in the literatures and in the variational method.

3. The matrix element Hmn for an anharmonic oscillator

Anharmonic-oscillator potentials are usually polynomial or exponential functions. In this
section, we intend to consider a relatively general anharmonic oscillator with a potential,
V (x), having a Fourier representation in a sense of tempered distributions [17]. That is, one
can write V (x) as

V (x) =
∫ ∞

−∞

d�√
2π

Ṽ (�) ei�x. (8)

Speaking roughly, this requires that the integral
∫ ∞
−∞ V (α) e−α2

dα is finite. Such a potential
covers various polynomial and some exponential potentials. For such a general anharmonic
oscillator, we will calculate Hmn = 〈φm| p̂2

2M
|φn〉 + 〈φm|V (x)|φn〉 in the Schrödinger picture

with M, the mass of the oscillator.
For the dynamic part, one can easily get

〈φm| p̂2

2M
|φn〉 = h̄2

2M

µ

2

[
(2n + 1)δmn −

√
(n + 1)(n + 2)δmn+2 −

√
n(n − 1)δmn−2

]
. (9)

To calculate the potential part,

〈φm|V (x)|φn〉 =
∫ ∞

−∞

d�√
2π

Ṽ (�)

∫ ∞

−∞
φm(x) ei�xφn(x) dx, (10)

one can use [18, section 11.4, formula (19), p 198]∫ ∞

−∞
e−(x−ia)2

Hm(x)Hn(x) dx = √
π2mn!(ia)m−nL(m−n)

n (2a2) (11)

for m � n. Here, the symbol L(α)
n (x) = �(n+α+1)

n!�(α+1)

[
1 +

∑n
j=1(−1)j

n(n−1)···(n−j+1)

(α+1)(α+2)···(α+j)
xj

j !

]
is

a generalized Laguerre polynomial. Actually, equation (11) can be obtained by directly
performing the integration through the generating function of the Hermitian polynomials.
From equation (11), the potential part can be expressed as

〈φm|V (x)|φn〉 = AnAm2mn!
√

π

µ

∫ ∞

−∞

d�√
2π

Ṽ (�) e−�2/4µ

(
i

�

2
√

µ

)m−n

L(m−n)
n

(
�2

2µ

)
.

(12)
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Substituting the series expression of the generalized Laguerre polynomial into the last equation,
one has

〈φm|V (x)|φn〉 =
Min{m,n}∑

j=0

C
j
nC

j
mj !√

m!n!
(2µ)−

m+n−2j

2

∫ ∞

−∞

d�√
2π

Ṽ (�) e− �2

4µ (i�)(m+n−2j) (13)

with Min{m, n} representing the smaller value between m and n. Finally, using the

formula
∫ ∞
−∞ e−a2x2±qx dx = e

q2

4a2

√
π

a
to perform a Gaussian transform and noting that

V (n)(x) ≡ dnV (x)

dxn = ∫ ∞
−∞

d�√
2π

Ṽ (�)(i�)n ei�x , one obtains

〈φm|V (x)|φn〉 =
Min{m,n}∑

j=0

C
j
nC

j
mj !√

m!n!
(2µ)−

m+n−2j

2

∫ ∞

−∞

dα√
π

V (m+n−2j)

(
α√
µ

)
e−α2

, (14)

with C
j
n being the number of combinations.

The sum of equation (9) and equation (14) is Hmn for a relatively general anharmonic
oscillator, which is consistent with that in [14]. Noticing the integrals

∫ ∞
−∞

dα√
π
αm e−α2 =

δm,2n2n(2n − 1)!! for m = 0, 1, 2, . . . , one can easily get Hmn for an anharmonic oscillator
with any polynomial potential. For example, one can check that equations (9) and (14) here
yield [11, equation (20)] with µ here corresponding to �0 there and [12, equation (6)] with
µ here to h̄2

/(
mr2

0

)
there. Moreover, for an anharmonic oscillator with the usual exponential

potential, the integrals in equation (14) are only Gaussian integrals and are easily carried out.
As a matter of fact, for any anharmonic oscillator, so long as the integration in equation (14)
can be executed, one can get its Hmn from the formulae in this section.

4. Examples and comparisons

We adopt natural units with h̄ = 1 and M = 1 to carry out computations in this section.
For the convenience of comparisons, we apply our scheme to the one-dimensional Morse and
two double-well anharmonic oscillators which were discussed in [6, 9, 11, 19]. For every
oscillator, at every N in considerations, one can first make Mathematica program according
to the scheme stated in section 2 to determine µO, and then use the standard Mathematica
program to compute the eigenvalues of the matrix HN and get the N approximate energies
E

(N)
k s (k � N). In practical computations on choosing µO, the number of solutions of

equations (3) and (6) increases rapidly with the increase of the dimension N so that our PC
(Pentium 4) takes a great deal of time to choose µO. Therefore, we choose to use the graphic
method or some methods which consume less time for solving equations (3) and (6) and
singling out µO, and consequently µOs singled out here are mostly not quite accurate. This
is not a problem because E

(N)
k s are not sensitive to the variations of µ according to the PSM.

Actually, we obtained good approximate results using the not quite accurate values for µO.
The first application we intend to consider here is to the one-dimensional Morse oscillator

with the potential

V (x) = De(1 − e−αx)2. (15)

This is an asymmetrical single-well potential, and the exact energy eigenvalues for the
system have been known. In [11], the Taylor series (equation (23) there) of the potential
equation (15) was truncated and kept only the first 23 terms. Here, to get Hmn, we need not to
truncate the potential as a polynomial. According to equations (9) and (14), performing easily
the Gaussian integrals yields
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Table 1. Comparison with [11, table 1]. The four lowest energy eigenvalues for the 1D Morse
oscillator. For every energy eigenvalue, the first line represents the present calculation and the
second line represents [11]. The right column gives the exact energies.

N 10 20 30 50 ∞
µO 16.3832 16.269 14.735 19.699 065

E0 9.875 004 716 988 9.875 000 000 061 9.875 000 000 000 9.875 000 000 0000 9.875
9.880 031 9140 9.875 001 8376 9.875 000 0037 9.875 000 0000

E1 28.875 057 290 915 28.875 000 001 217 28.875 000 000 000 28.875 000 000 0000 28.875
28.918 707 977 28.875 033 730 28.875 000 083 28.875 000 000

E2 46.878 317 697 654 46.875 000 076 082 46.875 000 000 009 46.875 000 000 0000 46.875
47.052 872 4878 46.875 450 6843 46.875 000 6713 46.875 000 0000

E3 63.923 569 523 16 63.875 004 736 89 63.875 000 000 05 63.875 000 000 000 63.875
64.806 109 6161 63.877 855 3192 63.875 003 3686 63.875 000 0000

Hmn = h̄2

2M

µ

2
[(2n + 1)δmn −

√
(n + 1)(n + 2)δmn+2 −

√
n(n − 1)δmn−2

]

+ Deδmn − 2De

√
m!n!

Min{m,n}∑
j=0

(−α)m+n−2j

j !(m − j)!(n − j)!
(2µ)−

m+n−2j

2 e
α2

4µ

+ De

√
m!n!

Min{m,n}∑
j=0

(−2α)m+n−2j

j !(m − j)!(n − j)!
(2µ)−

m+n−2j

2 e
α2

µ . (16)

A direct calculation can also give the last equation.
With the help of Mathematica (Version 5.0), taking α = 1 and De = 200, we obtained

E
(N)
k s at various dimensions N for the Morse oscillator with equation (15). The numerical

study indicates that at a different N, there exists a different µO, and generally the accuracy
of the results increases with the increase of N. Furthermore, at any given N, the approximate
results for the lower lying states are generally more accurate than those for the higher lying
states. These characteristics exist also in the approximate results for the other oscillators we
will consider later. Table 1 gives the comparison of our results for the four lowest energy
eigenvalues with [11, table 1]. In table 1, the right column is the exact energy eigenvalues
(N → ∞), and for every energy eigenvalue, the first and second lines correspond to ours
and [11, table 1], respectively. Table 1 shows that our approximate results only at N = 30
have been at least as accurate as the results at N = 50 in [11], and at N = 20 and 30, our
scheme provides at least three significant figures more accurate results than those in [11].
For example, the relative errors of E

(20)
0 , E

(20)
1 , E

(20)
2 and E

(20)
3 produced by our scheme to

the corresponding exact energies are 6.2 × 10−12, 4.2 × 10−11, 1.6 × 10−9 and 7.4 × 10−8,
respectively, whereas those at N = 20 in [11] are 1.86 × 10−7, 1.168 × 10−6, 9.6 × 10−6 and
4.47 × 10−5, respectively. Additionally, we repeated calculations in table 1 of [11] to give
more digits. The results indicate that although our result at N = 50 is more accurate than the
corresponding results in [11]; the differences between them are not big at all. This implies that
our method has a fast convergency than the method in [11] and will provide similar accuracy
to the method in [11] with a larger N. This characteristic also exists in the next comparisons,
tables 2 and 3, for the other potential in [11] and with the method in [9].

Before continuing to the second system, we check the dependence of our approximations
in table 1 on the variations of µ. Taking the approximations to the ground-state energy
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Figure 1. The dependence of the relative error
E

(N)
0 (µ)−E

(N)
0 (µO)

E
(N)
0 (µO)

with N = 10 upon µ.

µO = 16.3832. In the figure, 	E0/E0 represents the relative error.

Figure 2. Similar to figure 1 but with N = 20 and µO = 16.269.

E0 at N = 10 and 20 as examples, we depict the dependence of the relative errors to the

approximations E
(N)
0 (µ)−E

(N)
0 (µO)

E
(N)
0 (µO)

upon µ at N = 10 and 20 in figures 1 and 2, respectively.

In these two figures, 	E0/E0 represents the relative error. Figure 1 indicates that when
µ varies from 16.2 to 16.5, the relative error to E

(10)
0 (µO) is of the order of 10−8 or less.

Figure 2 indicates that when µ varies from 16. to 16.5, the relative error to E
(20)
0 (µO) is of

the order of 10−13. Because the relative error of E
(10)
0 (µO) and E

(10)
0 (µO) to E

(exact)
0 is of the

order of 10−7 and 10−12, respectively, deviation of the value of µ from the true optimal value
of µ used in the practical computation is not enough to affect the significant figures of the
approximations at the dimensions N = 10 and 20 to the two lowest lying energy eigenvalues
for the one-dimensional Morse oscillator. This point should be valid for approximations at all
dimensions of N to all energy eigenvalues of the one-dimensional Morse oscillator and of other
oscillators, so long as the PMS is adopted. So, hereafter we will not discuss the dependence
of the approximations upon µ. This insensitivity of the approximations to µ lightens greatly
the labor on choosing the optimal value of µ. (One has may be noted that, in figures 1 and 2,
the geometrical forms of the curves are not wells and accordingly the values of µO we singled
out there do not make E

(10)
0 and E

(20)
0 minimized. This is understandable, because µO is the

value of µ, where E(N) is most insensitive to µ, but need not to be the value where E
(N)
0 is a

minimum.)
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Table 2. Comparisons with [11, table 2]. The four lowest energy eigenvalues for the double-well
oscillator equation (17). For every energy eigenvalue, the first line is for ours and the second line
for [11].

N 10 20 30 50 100

µO 3.1504 3.7176 4.7453 5.1663 7.011

E0 1.804 035 016 8424 1.800 813 526 4598 1.800 813 494 6236 1.800 813 494 6206 1.800 813 494 6206
1.808 714 77 1.800 821 70 1.800 813 51 1.800 813 49 1.800 813 49

E1 1.899 192 175 1201 1.896 505 447 3860 1.896 505 382 3335 1.896 505 382 3333 1.896 505 382 3333
1.900 771 31 1.896 507 20 1.896 505 39 1.896 505 38 1.896 505 38

E2 4.375 442 249 0606 4.370 466 955 4131 4.370 466 726 2303 4.370 466 726 2086 4.370 466 726 2086
4.385 255 38 4.370 514 70 4.370 466 78 4.370 466 73 4.370 466 73

E3 5.589 061 669 75 5.573 350 565 91 5.573 350 204 76 5.573 350 204 75 5.573 350 204 75
5.616 193 58 5.573 382 97 5.573 350 43 5.573 350 20 5.573 350 20

Now we consider the following double-well potential:

V (x) = (x2 − 2)2, (17)

which was also treated in [11].
Before reporting our results for the present potential, in order to illustrate the procedure of

determining µO in section 2, here we first state how to determine µO at the dimension N = 2
for the potential equation (17). In this case, equations (3) and (6) yield

45 − 192µS + (480 − 72E(2))µ2
S + 8(−61 + 16E(2))µ3

S

+ 16(13 − 8E(2) + (E(2))2)µ4
S − 16(−4 + E(2))µ5

S + 3µ6
S = 0

and

−90 + 288µS + 24(−20 + 3E(2))µ2
S + (244 − 64E(2))µ3

S − 8(−4 + E(2))µ5
S + 3µ6

S = 0,

respectively. With the help of Mathematica program, one can find that there are seven
pairs of solutions for the system of last two equations,

(
E

(2)
Sl , µSl

)
(l = 1, 2, . . . , 7).

Among them, there exist four pairs of solutions with µSi positive ({i} = {1, 2, . . . , 4}).
Then one can substitute the four pairs of solutions

{
E

(N)
Si , µSi

}
(i = 1, 2, 3, 4) into

equation (7) for the calculation of the value of d2E(2)

dµ2 , and will find that
{
E

(N)
Sj , µSj

} =
{2.469 207 154 862 0063, 1.088 699 919 167 7311} gives rise to the smallest value among∣∣ d2E(2)

dµ2

∣∣
µ=µSi

∣∣s with i = 1, 2, 3, 4. Hence, µO = 1.088 699 919 167 7311, which yields two

approximate energies E
(2)
1 = 2.469 207 154 864 083 and E

(2)
2 = 3.067 890 021 771 4844 to

E
(exact)
1 and E

(exact)
2 , respectively.

The comparison of our results for the potential equation (7) with [11, table 2] is made
in table 2. (In fact, the authors did not use their scheme relevant to H00 for choosing µO

for [11, table 2], as was pointed out in [12].) In table 2, for every energy eigenvalue, the
first and second lines correspond to ours and [11, table 2], respectively. In table 2 all the
approximations at a given N produced by the present scheme are more accurate than those in
[11, table 2] at the same N, only except for E

(10)
3 . Moreover, our approximate results only

at N = 30 have been as accurate as the results at N = 50 in [11, table 2]. Thus, the above
two comparisons imply that the scheme with the PMS is effective and appropriate to both the
single-well and the double-well oscillators, and can give rise to much more accurate and faster
convergent approximations to the exact energy eigenvalues than the scheme of minimizing the
diagonal element H00.
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Table 3. Comparisons with [9, table 1]. The two energy eigenvalues E0, E38 for the deep double-
well potential equation (18). The data of odd columns are from [9, table 1], and in the bottom line,
our results are obtained for N = 201 and [9]’s for N = 199.

N µO E0 E38

1 0.059 995 6809 0.059 995 6809 208.348 332 793 41 208.348 332 793
19 0.8500 0.567 915 5728 7.377 020 917 0415 8.859 927 521
39 1.7404 1.141 055 937 5.026 580 037 9050 5.037 280 168 350.550 618 3360 567.110 592 768
59 2.2963 1.676 300 880 4.989 998 032 7601 4.990 015 387 251.113 888 8782 276.881 099 043
79 2.6260 2.166 890 7091 4.989 954 551 2080 4.989 954 561 209.654 744 7627 213.766 610 789
99 3.2664 2.613 343 2046 4.989 954 548 6212 4.989 954 548 184.455 411 5988 187.145 654 479

159 4.5269 3.731 245 9255 4.989 954 548 6210 4.989 954 548 181.943 599 5015 181.943 599 502
201 5.216 4.337 755 7125 4.989 954 548 6210 4.989 954 548 181.943 599 5015 181.943 599 501

Table 4. Comparisons with [19, table 4]. The four lowest energy eigenvalues for the 1D Morse
oscillator. In our computations, N = 31 and µ = 31.8. For every energy eigenvalue, the left data
are for ours and the right data for [19]. The four lowest lying exact energy eigenvalues are 19.75,
57.75, 93.75 and 127.72, respectively.

E0 E1

19.750 000 000 000 018 19.750 000 000 00 57.750 000 000 000 03 57.750 000 000 00

E2 E3

93.750 000 000 000 67 93.750 000 000 00 127.750 000 000 4998 127.750 000 00

The third anharmonic oscillator we consider here is a deep double-well oscillator

V (x) = (x2 − 25)2. (18)

As was introduced in section 1, [9] used a different scheme of choosing µO, which modified
the scheme in [6], and provided more accurate approximations for the anharmonic oscillator
equation (18) than [6]. Here, table 3 gives the comparison of our results with the results in
[9, table 1]. In table 3, the data of the even columns are our results and those of the odd
columns (except for the first column) come from [9, table 1]. Additionally, in the bottom line
of the table, our results are obtained for N = 201 (of course, one can consider N = 199),
and [9]’s for N = 199. As it should be, for N = 1, our result is identical to that in [9]. At
higher dimensions N �= 1, our results are more accurate than those in [9] and accordingly
than those in [6]. As mentioned in the first example, our scheme provides much more accurate
results than [9] for not a too big N and similar accurate results to [9] for a larger N. This
characteristic indicates a fast convergence of our approximation. So, this comparison implies
that our scheme can provide better approximations than the scheme of minimizing the diagonal
element Hnn with n = N − 1 in [9].

In the above, we have compared our scheme of determining µ with various schemes in
[6, 9, 11]. We noted that for the Morse oscillator, [19] also considered its energy eigenvalues
for α = √

2 and De = 400 (in terms of notations here) by substituting powers for φns in
equation (1) and requiring the vanishing finite-boundary condition for � in equation (1).
Using the MSRRVM with the PMS, we also compute its four lowest energy eigenvalues for
α = √

2 and De = 400. Our results are compared with those in [19, table 4]. In table 4, for
every energy eigenvalue, the left data are ours and the right are those in [19]. Table 4 indicates
that our computation at N = 31 provides approximations at least as accurate as those in [19]
to the four lowest lying exact energy eigenvalues 19.75,57.75,93.75 and 127.72, respectively.
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5. Conclusion

In this paper, by considering anharmonic oscillators, we have proposed a scheme of singling
out the optimal value of the nonlinear parameter appeared in the MSRRVM according to the
PMS. Through the MSRRVM with the PMS, in which the trial state is expanded in terms
of the energy eigenfunctions for a harmonic oscillator, we have approximated the lowest
lying energy eigenvalues for the one-dimensional Morse and two double-well oscillators, and
compared the resultant approximations with those given by the MSRRVM with other schemes
of determining µO in [6, 9, 11]. Although we have not used µO with a high accuracy, the
comparisons have shown that the MSRRVM with the PMS can provide much more accurate
and faster convergent approximations to the exact energy eigenvalues than the MSRRVM
does with the schemes of determining µO relevant to the diagonal elements Hnn [6, 9, 11].
Although the schemes of determining µO relevant to the diagonal elements Hnns are easier to
be performed than our scheme based on the PMS which is relevant to all elements Hmns with
m, n � N , the insensitivity to µ and the higher accuracy and the faster convergency of our
scheme can compensate for it and save labor. Moreover, it is not too difficult to employ high
speed computers nowadays, and hence the MSRRVM with the PMS should be helpful and
effective for approximating energy eigenvalues of a system.

It seems to us that the PMS is a very useful principle. It has been employed in variational
perturbation theory for two decades or so, and now played an effective role in solving the
problem of how to determine the value of µ in the MSRRVM for anharmonic oscillators. We
feel that for other systems and the general trial wavefunctions equation (1), the PMS can also
be employed to determine the values of nonlinear parameters in MSRRVM. Perhaps, for any
approximate scheme in which parameters to be determined exist, the PMS can play a role in
singling out the values of the parameters.
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